SHORT REPORTS

TWO PHTHALIDE GLUCOSIDES FROM GENTIANA PYRENAICA

J. GARCIA,* E MPONDO MPONDO, A. J. CHULIA, M. KAOUADJI and G. CARTIER

Laboratoire de Pharmacognosie, UFR de Pharmacie, Université J Fourier, Domaine de la Merci, 38700 La Tronche, France

(Received 19 September 1988)

Key Word Index-Gentiana pyrenaica, Gentianaceae, phthalide glucoside.

Abstract—From the aerial parts of Gentiana pyrenaica two new phthalide glucosides have been isolated. Their structures have been established by spectroscopic means as $3-(3-O-\beta-D-glucosyl)$ phthalide and $3-[3-(6-vanilloyloxy-O-\beta-D-glucosyl)]$ phthalide

INTRODUCTION

Gentiana pyrenaica L. (Gentianaceae) was collected when in flower from the Pyrenees. Five C-glycosylflavones and one flavonol glucoside have been reported in leaves and stems of this species [1]. Our investigation on the aerial parts led to the isolation of two new phthalide glucosides, pediglucoside (1) and 6'-vanilloylpediglucoside (2). This paper deals with the structural elucidation of these compounds based on spectral evidence.

RESULTS AND DISCUSSION

Dried and powdered aerial parts of *G. pyrenaica* were extracted by solvents of increasing polarity as described in the Experimental. The chloroform extract was separated by centrifugal TLC and HPLC to afford compounds 1 and 2.

Compound 1 presented a UV spectrum characteristic of the phthalide ring (λ_{max} nm. 225, 275, 278), identical to that of pedirutinoside (3), previously isolated from leaves of Gentiana pedicellata [2]. The comparison of the ¹H NMR spectrum of 1 and 3 showed a close relationship between these compounds and revealed for 1 the lack of the rhamnose moiety present in 3. This result was confirmed by the R_f value of 1 being higher than that of 3 and by FABMS data (m/z 355 [M+H]⁺).

The proposed structure was also supported by the 13 C NMR spectrum of 1 which displayed a signal at δ 62.8, indicating a free hydroxyl group at C-6'. Thus, 1 is 3-(3-O- β -D-glucosylpropyl)phthalide for which we propose the name pediglucoside.

Compound 2 showed UV maxima at 226, 263, 278, 292 nm. ¹H NMR data of 2 were closely similar to those of 1, except for the presence of additional signals above 6.7 ppm characteristic of a 1,3,4-trisubstituted aromatic ring and at δ 3.84 attributable to a methoxy group. NOE

experiments showed enhancements between this methoxy and H-2", indicating 2 to be a vanilloyl ester of 1. The deshielding of H-6'A and H-6'B at δ 4.58 and 4.39 when compared to 1 showed that the vanilloyl unit was located at position 6' of the glucose. This result was also confirmed, in the ¹³C NMR spectrum, by the corresponding downfield shift of the C-6' signal ($\Delta \delta = +2.2$ ppm) while C-5' was shifted upfield by a similar amount. This structure was in accordance with FABMS which showed a fragment at m/z 313 arising from the glucose part esterified with vanillic acid. Thus 2 is 3-[3-(6-vanilloyloxy-O- β -O-glucosyl)propyl]phthalide or 6'-vanilloylpediglucoside

In the Gentianaceae, phthalides were first reported from Gentiana pedicellata [2-5] which belong, like G. pyrenaica, to the Chondrophylla section. The isolation from the latter species of further phthalides closely related to those of G. pedicellata may be of chemotaxonomic interest.

EXPERIMENTAL

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were recorded with TMS as int. standard.

- I R=H
- 2 R=vanilloyl
- 3 R≈rhamnosyl

^{*}Author to whom correspondence should be addressed

1760 Short Reports

Table 1 ¹H NMR data (300 MHz, CD₃OD) of the phthalides

Н	1	2
3	5 66 dd (7-3 5)	5 56 dd (7-3.5)
4	7 63 br d (7 5)	7 54 br d (7 5)
5	7 76 td (7 5–1)	7 67 td (7 5-1)
6	7 58 br t (7 5)	7 48 br t (7 5)
7	7 85 br d (7 5)	777 brd (75)
8 A	2 28 m	2 23 m
8 B 9	1 69-1 94 m	1 65-1 82 m
10A	3.98 ddd (9.5-7-5.5)	3 91 ddd (9 5-7-5.5)
10B	3.63 dt (9 5-6)	3 69 dt (9 5-5)
1'	4 25 d (8)	4 32 d (7 5)
2'-5'	3 17-3 34 m	3 20-3 60 m
6'A	3 85 dd (12-2)	4.58 dd (12-2)
6′B	3 65 dd (12-5)	4 39 dd (12-6)
2"		7.46 d (2)
5"		6 79 d (8 5)
6"		7 49 dd (8 5-2)
OMe		3 84 s

Values in parentheses are coupling constants in Hz

Isolation. The plant material was collected at Puymorens pass in the French Pyrenees (Pyrénées Orientales, France) in July 1986. A voucher specimen is deposited at the Pharmacognosy Laboratory Herbarium Dried and powdered aerial parts (240 g) were successively extracted with n-hexane, C_6H_6 , CHCl₃, Me₂CO and MeOH at room temp The CHCl₃ extract was submitted to centrifugal TLC eluting by CHCl₃-MeOH with increasing MeOH content Fraction eluted with CHCl₃-MeOH (9 1) afforded compound 2 (3 5 mg) purified by HPLC on a silica gel column (C_6H_{14} -iso-PrOH-MeOH 14.3 3) and on RP-18 (MeOH-H₂O 9 11) The fraction eluted with CHCl₃-MeOH (3 2) yielded 1 (9 mg) after final purification by HPLC on RP-18 (MeOH-H₂O 7 13).

Pediglucoside (1) UV $\lambda_{\text{max}}^{\text{MoN}}$ nm 225, 275, 278 FABMS m/z 355 [M+H]⁺, 193 [M+H-Glc]⁺, 175, 133 ¹H NMR Table 1 ¹³C NMR Table 2

6'-Vanilloylpediglucoside (2) UV λ_{max}^{MeOH} nm 226, 263, 278, 292. FAB⁺MS m/z 527 [M+Na]⁺, 505 [M+H]⁺, 313, 193, 175, 151, 133 FAB-MS m/z: 503 [M-H]⁻, 167 ¹H NMR. Table 1 ¹³C NMR Table 2

Table 2. ¹³C NMR data (75 46 MHz, CD₃OD) of the phthalides

C	1	2
1	172.7	172 6
3	83 1	82 8
3a	151.9	151 7
4	123 5	123 4
5	135 5	135 5
6	130 3	130.2
7	126 2	126.2
7a	1270	126.8
8	26 2	26 4
9	324	32 3
10	70 0	69 9
1'	1043	104 5
2'	75 1	75 1
3'	779	78 0
4'	71 7	72 0
5′	78 2	75 5
6'	628	65 1
Ar-CO		168 0
1"		122 5
2"		1160
3"		148 8
4"		1530
5"		113 7
6''		125 1
OMe		56 5

Acknowledgements—We thank Mr C Bosso (CERMAV) for FABMS measurements and Miss N. Durand for secretarial help

REFERENCES

- Marston, A., Hostettman, K. and Jacot-Guillarmod, A (1976) Helv. Chim Acta. 59, 2596
- 2 Chulia, A. J., Garcia, J and Mariotte, A M (1986) J Nat Prod. 49, 514
- 3 Chulia, A. J., Kaouadji, M. and Mariotte, A. M. (1984) Tetrahedron Letters 25, 5039.
- 4 Mpondo Mpondo, E., Garcia, J and Chulia, A. J (1987) Planta Med. 53, 297
- 5 Garcia, J., Mpondo Mpondo, E., Chulia, A. J. and Mariotte, A. M. (1989) Planta Med (in press)